Inverse Satake isomorphism and change of weight

نویسندگان

چکیده

Let G G be any connected reductive alttext="p"> p encoding="application/x-tex">p -adic group. K subset-of upper K ⊂ encoding="application/x-tex">K\subset G special parahoric subgroup and V comma prime"> V , ′ encoding="application/x-tex">V,V’ two irreducible smooth alttext="ModifyingAbove double-struck F Subscript p Baseline With bar left-bracket right-bracket"> F ¯<!-- ¯ </mml:mover> stretchy="false">[ stretchy="false">] encoding="application/x-tex">\overline {\mathbb {F}_p}[K] -modules. The main goal of this article is to compute the image Hecke bimodule E n d ModifyingAbove Sub right-bracket left-parenthesis c minus I Superscript G prime right-parenthesis"> End ⁡<!-- ⁡ stretchy="false">( c −<!-- − <mml:mi>I n d stretchy="false">) encoding="application/x-tex">\operatorname {End}_{\overline {F}_p}[K]}(c-Ind_K^G V, c-Ind_K^G V’) by generalized Satake transform give an explicit formula for its inverse, using pro-. This immediately implies “change weight theorem” in proof classification mod admissible representations terms supersingular ones. A simpler change theorem, not or Lusztig-Kato formula, given when split appendix quasi-split, almost all K"> encoding="application/x-tex">K

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Satake Isomorphism

In this paper, we present an expository treatment of the Satake transform. This gives an isomorphism between the spherical Hecke algebra of a split reductive group G over a local field and the representation ring of the dual group Ĝ. If one wants to use the Satake isomorphism to convert information on eigenvalues for the Hecke algebra to local L-functions, it has to be made quite explicit. This...

متن کامل

Spherical representations and the Satake isomorphism

Last updated: December 10, 2013. Topics: Motivation for the study of spherical representations; Satake isomorphism stated for the general case of a connected reductive group (taking Bruhat-Tits theory as a black box); interpretation (spherical principal series, Satake parameter, representations of dual reductive group); Satake made more explicit for the split case (key calculation); idea of pro...

متن کامل

A SATAKE ISOMORPHISM IN CHARACTERISTIC p

Suppose that G is a connected reductive group over a p-adic field F , that K is a hyperspecial maximal compact subgroup of G(F ), and that V is an irreducible representation of K over the algebraic closure of the residue field of F . We establish an analogue of the Satake isomorphism for the Hecke algebra of compactly supported, Kbiequivariant functions f : G(F ) EndV . These Hecke algebras wer...

متن کامل

The Satake Isomorphism for Special Maximal Parahoric Hecke Algebras

Let G denote a connected reductive group over a nonarchimedean local field F . Let K denote a special maximal parahoric subgroup of G(F ). We establish a Satake isomorphism for the Hecke algebra HK of K-bi-invariant compactly supported functions on G(F ). The key ingredient is a Cartan decomposition describing the double coset space K\G(F )/K. We also describe how our results relate to the trea...

متن کامل

Geometric Satake, Springer Correspondence, and Small Representations

For a simply-connected simple algebraic group G over C, we exhibit a subvariety of its affine Grassmannian that is closely related to the nilpotent cone of G, generalizing a well-known fact about GLn. Using this variety, we construct a sheaf-theoretic functor that, when combined with the geometric Satake equivalence and the Springer correspondence, leads to a geometric explanation for a number ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Representation Theory of The American Mathematical Society

سال: 2022

ISSN: ['1088-4165']

DOI: https://doi.org/10.1090/ert/594