Inverse Satake isomorphism and change of weight
نویسندگان
چکیده
Let G G be any connected reductive alttext="p"> p encoding="application/x-tex">p -adic group. K subset-of upper K ⊂ encoding="application/x-tex">K\subset G special parahoric subgroup and V comma prime"> V , ′ encoding="application/x-tex">V,V’ two irreducible smooth alttext="ModifyingAbove double-struck F Subscript p Baseline With bar left-bracket right-bracket"> F ¯<!-- ¯ </mml:mover> stretchy="false">[ stretchy="false">] encoding="application/x-tex">\overline {\mathbb {F}_p}[K] -modules. The main goal of this article is to compute the image Hecke bimodule E n d ModifyingAbove Sub right-bracket left-parenthesis c minus I Superscript G prime right-parenthesis"> End <!-- stretchy="false">( c −<!-- − <mml:mi>I n d stretchy="false">) encoding="application/x-tex">\operatorname {End}_{\overline {F}_p}[K]}(c-Ind_K^G V, c-Ind_K^G V’) by generalized Satake transform give an explicit formula for its inverse, using pro-. This immediately implies “change weight theorem” in proof classification mod admissible representations terms supersingular ones. A simpler change theorem, not or Lusztig-Kato formula, given when split appendix quasi-split, almost all K"> encoding="application/x-tex">K
منابع مشابه
On the Satake Isomorphism
In this paper, we present an expository treatment of the Satake transform. This gives an isomorphism between the spherical Hecke algebra of a split reductive group G over a local field and the representation ring of the dual group Ĝ. If one wants to use the Satake isomorphism to convert information on eigenvalues for the Hecke algebra to local L-functions, it has to be made quite explicit. This...
متن کاملSpherical representations and the Satake isomorphism
Last updated: December 10, 2013. Topics: Motivation for the study of spherical representations; Satake isomorphism stated for the general case of a connected reductive group (taking Bruhat-Tits theory as a black box); interpretation (spherical principal series, Satake parameter, representations of dual reductive group); Satake made more explicit for the split case (key calculation); idea of pro...
متن کاملA SATAKE ISOMORPHISM IN CHARACTERISTIC p
Suppose that G is a connected reductive group over a p-adic field F , that K is a hyperspecial maximal compact subgroup of G(F ), and that V is an irreducible representation of K over the algebraic closure of the residue field of F . We establish an analogue of the Satake isomorphism for the Hecke algebra of compactly supported, Kbiequivariant functions f : G(F ) EndV . These Hecke algebras wer...
متن کاملThe Satake Isomorphism for Special Maximal Parahoric Hecke Algebras
Let G denote a connected reductive group over a nonarchimedean local field F . Let K denote a special maximal parahoric subgroup of G(F ). We establish a Satake isomorphism for the Hecke algebra HK of K-bi-invariant compactly supported functions on G(F ). The key ingredient is a Cartan decomposition describing the double coset space K\G(F )/K. We also describe how our results relate to the trea...
متن کاملGeometric Satake, Springer Correspondence, and Small Representations
For a simply-connected simple algebraic group G over C, we exhibit a subvariety of its affine Grassmannian that is closely related to the nilpotent cone of G, generalizing a well-known fact about GLn. Using this variety, we construct a sheaf-theoretic functor that, when combined with the geometric Satake equivalence and the Springer correspondence, leads to a geometric explanation for a number ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Representation Theory of The American Mathematical Society
سال: 2022
ISSN: ['1088-4165']
DOI: https://doi.org/10.1090/ert/594